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Note that some papers may not relate to self-supervised learning per se, but rather provide background or
ideas that are utilized by self-supervised methods.

1.1 2015: Knowledge Distillation

In [27], the authors observe that soft or probabilistic targets, particularly those with higher entropy, convey
more information per example than hard or discrete targets. Define the temperature-normalized softmax as:

pi =
exp(zi/τ)∑J
j=1 exp(zj/τ)

,

where zi is the logit of node i in the output layer, and τ is the temperature hyper-parameter. The stan-
dard softmax is recovered by τ = 1, while τ > 1 results in a higher-entropy (equivalently, more uniform)
distribution over classes. A teacher network is first trained with a standard softmax. During distillation, the
temperature is increased such that the teacher produces a soft target for each example. The student network
learns to match the output of the teacher, via cross entropy loss, training at the same elevated temperature.
After training, the student network operates with τ = 1. When labels are available, the loss may be updated
to include the cross entropy between the student’s prediction and the true class assignment.

1.2 2015: Adversarial Autoencoders

The X denote the model input and Z a corresponding latent representation. The adversarial autoencoder
[34] learns an encoder q(Z|X) such that the aggregated posterior distribution q(Z) =

∫
q(Z|X)p(X)dX

matches an arbitrary prior distribution p(Z). Training involves a reconstruction step and a regularization
step. In the reconstruction step, the encoder q(Z|X) and decoder p(X|Z) are trained to minimize the
reconstruction error. In the regularization step, the discriminator is first trained to distinguish Z+ ∼ p(Z)
from Z− ∼ q(Z|X) with X ∼ p(X), then the generator (here, the encoder) is updated to better confuse the
discriminator.

1.3 2015: Deep Residual Learning

Sufficiently deep networks suffer a degradation problem: performance begins to decrease due to difficulty
optimizing rather than over-fitting. In principle, deep layers (i.e. those further from the input) whose
capacity is unneeded should learn an identify function. Thus, barring optimizing failures, adding additional
layers to a network should never decrease performance. In practice, this is not the case. Deep residual
learning [26] makes the identity mapping trivial to learn by adding the input x to a residual block (i.e. group
of layers) to its output. Letting h(x) denote the mapping the block would ideally perform, adding the input
to the block’s output allows the block instead to learn f(x) = h(x)−x, i.e. the residual. When the dimension
of h(x) differs from x, a linear projection W is applied to x for dimensional consistency: y = f(x) +Wx.
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Figure 1. Source: Deep Networks with Stochastic Depth [28].

1.4 2016: Stochastic Depth

Vanishing gradients refers to the loss of gradient information in deep networks during backpropagation due
to repeated multiplication by small weights. Batch normalization and skip connection [26] are strategies for
alleviating this problem. In stochastic depth [28], a substantial fraction of layers from a deep network are
randomly dropped during training, independently for each mini-batch, resulting in a small expected depth.
Similar to dropout, networks trained with stochastic depth can be interpreted as implicit ensembles of
networks with different depths. For the lth layer, let Bl denote a Bernoulli random variable with probability
pl, redrawn for each mini-batch. With stochastic depth, the forward pass through the ResNet block in
Figure (1) becomes:

Hl = ReLU
{
Blfl(Hl−1) + id(Hl−1)

}
.

The authors recommend a linearly decaying survival probability, such that layers closer to the input are
retained with higher probability, pl = 1− (l/L)(1− pL). Here L is the total number of layers, and pL is the
probability of retaining the last layer.

1.5 2016: Context Encoders

The context encoder [36] uses an unsupervised training framework where the model must learn to inpaint the
contents of randomly ablated image regions. The context encoder model has an encoder-decoder architecture.
The encoder maps from a partially obscured image to a latent embedding. The decoder must reconstruct the
entire image, without missing regions, from the embedding. The objective function combines a reconstruction
loss and an adversarial loss. The reconstruction loss is simply the L2 distance between the original and
reconstructed images. For the adversarial set-up, the context encoder serves as the generator, while the
discriminator must learn to distinguish the original and reconstructed images.

1.6 2017: Mask R-CNN

Object detection involves localizing an object within a bounding box. Semantic segmentation requires clas-
sifying each pixel into a fixed set of categories. Instance segmentation involves both detecting all objects
present in an image, and segmenting each instance. Mask R-CNN extends Faster R-CNN to perform segmen-
tation [25]. For each object, it predicts a bounding box, the object class, and a binary mask differentiating
the object from background. Mask R-CNN first uses a region proposal network to identify candidate object
bounding boxes. From each region of interest (i.e. area within a bounding box), a fixed-size feature map is
extracted. These features become the input to a convolutional neural network (CNN) that performs both
object classification and bounding box regression. In parallel to the classification and boxing branch, a fully
convolutional network operates on each region of interest to output a binary segmentation mask. Impor-
tantly, and in contrast to previous work, the object classification task is decoupled from the segmentation
task. An ablation analysis shows that attempting to perform segmentation and classification simultaneously,
using a softmax activation, significantly reduces performance.
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1.7 2017: Attention

The Transformer [40] is an architecture for processing sequential data that avoids recursion and convolution
by making extensive use of attention. In scaled dot-product attention, the inputs are queries and keys of
dimension dk and values of dimension dv. For a single query vector q, the dot product is taken with all keys

(ki), then scaled by d
−1/2
k , to form the attention score:

ai =
qT ki√
dk

The attention scores (ai) are coverted to a set of weights by applying the softmax:

wi = softmax(ai) =
eai∑
j e
aj

The final output is an attention weighted sum of the values:

Attention(q,K, V ) =
∑
i

wivi.

Attention can be calculated for n queries in parallel via:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V.

Here Q is an n× dk matrix of queries, K is an n× dk matrix of keys, V is a n× dv matrix of values, and the

softmax is applied to the n× n matrix d
−1/2
k QKT row-wise.

Multi-headed attention forms H different linear projections of the queries, keys, and values. Each set of
projections it passed through an attention layer, and the output is described as an attention head :

headi = Attention(QWQ
i ,KWK

i , V WV
i ).

Note that the linear projections of the queries, keys, and values are indexed by the attention head. The H
resulting heads are concatenated then linearly projected to the working dimension of the model dm:

MultiHead(Q,K, V ) = c(head1, . . . ,headH)W,

where W is Hdv × dm.

In self-attention, the queries, keys, and values are all derived from the same source X:

Q = XWQ, K = XWK , V = XWV .

1.8 2017: LARS Optimizer

The learning rate scaling rule suggests that if the batch size is increased by a factor of k while keeping the
number of epochs fixed, then learning rate (LR) should likewise increase by a factor of k to compensate for
performing fewer gradient steps. However, if the LR becomes excessive, training may diverge for increasing
batch sizes. To counteract early instability, warm-up was proposed, in which the LR is gradually increased
to its target maximum over several epochs. In [45], the authors observed that instability arises when the
magnitude of an update (λ||∇ℓ(w)|| in stochastic gradient descent) is large by comparison to the magnitude
of the weights ||w||. Moreover, the ratio of these quantities varies across layers. The layer-wise adaptive rate

scaling (LARS) optimizer defines a local learning rate for each layer λl = η ||wl||
||∇ℓ(wl)|| , where η < 1 is a trust

coefficient. LARS is often utilized by contrastive learning methods that benefit from larger batch sizes.
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1.9 2018: GPT

The Generative Pretrained Transformer (GPT) [37] is an auto-regressive transformer decoder [40] trained in
a two-stage semi-supervised framework. First, the model is pretrained in an unsupervised (or self-supervised)
manner to perform language modeling (i.e predicting the next token given the previous tokens in the context
window) on a large corpus of text. Then, the model is fine-tuned in a supervised manner to perform specific
tasks. During fine-tuning, the language modeling loss is included as an auxiliary task.

1.10 2018: UPerNet

[42] define the task of unified perceptual parsing as recognition of as many visual concepts as possible from an
image. Visual concepts are organized into a hierarchy from scene-, object-, and object part-level, to object
materials and textures. The unified perceptual parsing network (UPerNet) [42] is a multi-task model based on
a feature pyramid network extractor. The evaluation metrics are pixel accuracy, the proportion of correctly
classified pixels, and the mean intersection over union (mIoU) between predicted and ground-truth masks,
averaged over classes. For some tasks, notably part segmentation, mIoU should include correct prediction
of background. For object detection, multi-tasking does not improve, and slightly degrades, performance.
Conversely, for material detection, multi-tasking improves performance, suggesting that knowing the object
type is informative when predicting its material.

1.11 2018: BERT

Bidirectional Encoder Representations from Transformers (BERT) [17] uses both preceding and succeeding
tokens (i.e. bidirectional context) to learn representations. BERT is based on the the transformer encoder
architecture from [40] (this is in contrast to GPT [37], which uses the decoder architecture). Each input
sequence starts with a learnable [CLS] token, and the final hidden state of this token serves as the input for
classification tasks. BERT is pretrained on two tasks:

• Masked language modeling, in which ∼ 15% of tokens are randomly selected for replacement. Among
these, 80% are replaced with [MASK], 10% are replaced with another token from the vocabulary, and
10% are left unchanged. The model is tasked with predicting the original token from context.

• Next sentence prediction, in which the model is presented 50% of the time with the actual next sentence,
and 50% of the time with another random sentence from the corpus.

After pretraining, all parameters of the BERT model are fine-tuned for downstream tasks. The authors argue
that large-scale self-supervised pretraining followed by fine-tuning reduces the need for heavily-engineered
task-specific architectures.

1.12 2019: RoBERTa

The robustly optimized BERT approach (RoBERTa) [32] is a strategy for training BERT [17] models that
attains significant performance improvements. BERT takes as input two token sequences delimited by special
tokens:

[CLS] x1, . . . , xN [SEP] y1, . . . , yM [EOS].

In the original BERT, the two sequences came from sentences sampled contiguously or from distinct doc-
uments with equal probability. RoBERTa packs the available input length with contiguous sentences and
discards the next sentence prediction task, instead focusing on the masked language modeling task. Whereas
the original BERT performed masking once during pre-processing (static masking), RoBERTa generates a
new masking pattern each time a sequence is provided to the model (dynamic masking). Larger batch sizes
are found to improve performance, even when the total computational budget for training is fixed. Moreover,
evaluation performance continued to improve with additional training.
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1.13 2019: ALBERT

ALBERT (A Lite BERT) [30] makes several modifications to BERT [17] that result in improved performance
on natural language understanding benchmarks. These include:

• Decoupling the hidden layer size H from the token embedding size E, enabling H ≫ E.

• Sharing parameters (both feed-forward and attention) across layers by default.

• Replacing the next-sentence prediction (NSP) task by the sentence order prediction (SOP) task.

In the SOP task, the model is presented with consecutive sentences (or more generally, segments) either in
the original order (positive example) or in reversed order (negative example). For downstream tasks, SOP
leads to improved performance whereas NSP does not. The authors conjecture that in NSP that model is
more likely to learn topics prediction (i.e. whether the proposed next sentence is on the same topic as the
last) as opposed to coherence (i.e. whether the proposed next sentence logically follows).

1.14 2019: MoCo

The Momentum Contrast [24] approach frames contrastive learning as dictionary lookup. A query encoder fq
encodes the query xq as q = fq(xq). A queue of encoded keys (k0, k1, . . . ) is maintained, where kj = fk(xj).
The query and key are two different “views” of the same image, where a view is derived by cropping the
original image and applying random augmentations. A contrastive loss is a function that is low when q is
similar to its matching, or positive, key k+ and dissimilar from all other keys. MoCo uses the loss:

ℓq = − ln
exp(q · k+/τ)∑K
j=0 exp(q · kj/τ)

, (1)

where τ is a temperature hyper-parameter. The sum in the denominator includes 1 positive and K negative
examples. Rather than learning separate parameters for the key encoder fk, the parameters θk are an
exponential moving average of the query parameters θq:

θk ← m · θk + (1−m) · θq.

Here m ∈ [0, 1] is the momentum coefficient, with m = 0.999 by default.

1.15 2019: Noisy Student Training

In Noisy Student Training [43], a teacher model is first trained on labeled data, then used to generate pseudo
labels for unlabeled data. A student model, with capacity at least that of the teacher, is trained on both
genuine and pseudo labels. In addition, the student must learn in the presence of noise, such as random
augmentations of the input and dropout. After training, the student becomes the teacher and the process
is iterated. The authors observe that joint training on labeled and pseudo labeled data outperforms first
pretraining on unlabeled data then fine-tuning on labeled data.

1.16 2020: SimCLR

SimCLR provides a simple framework for contrastive learning of visual representations [11] (Figure 2). A
data augmentation module randomly transforms a given example xi, producing two different views x̃i and
x̃j . A base encoder f(·), such as a ResNet [26], extracts a representation from each view, hi = f(x̃i) and
hj = f(x̃j). A light, non-linear projection head g(·) maps the representations into the space where the loss is
calculated, zi = g(hi) and zj = g(hj). Finally, a contrastive loss is calculated wherein the goal is to identify
which pair of views originated from the same example. Specifically, the normalized temperature-scaled cross
entropy loss takes the form:

ℓij = − ln
exp

{
sim(zi, zj)/τ

}∑2n
k=1 I(k ̸= i) exp

{
sim(zi, zk)/τ

} , (2)
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where sim(·, ·) is a similarity function, such as the cosine similarity, and τ is a temperature hyper-parameter.

Observations:

• Performance is significantly improved by including the projection head g(·) between the representation
h and the loss calculation. This is likely because training encourages the input z to the loss calculation
to be transformation invariant.

• Relative to the supervised setting, self-supervised learning benefits from larger models, larger batch
sizes, and longer training.

(a) SimCLR

(b) DINO

Figure 2. Sources: (a) A Simple Framework for Contrastive Learning of Visual Representations
[11]. (b) Emerging Properties in Self-Supervised Vision Transformers [9].

1.17 2020: Supervised Contrastive Learning

In contrastive self-supervised learning, a single positive pair (e.g. two views of the same image) is contrasted
against all negative pairs, resulting in representations of examples belonging to the same class being pulled
apart in embedding space. Supervised contrastive learning [29] generalizes the self-supervised case to allow
for multiple positive examples, where the additional positives are views from other examples belonging to
the same class. On each batch, data augmentation is applied to produce two views of a given example.
Similar to SimCLR [11], each view is passed through an encoder network f and a projection network g. The
output z of the projection network is unit-normalized, allowing the inner product to measure distances in
projection space. The objective function is:

ℓ = −
2n∑
i=1

1

||P(i)||
∑
p∈P(i)

ln

{
exp(zi · zp/τ)∑

n∈N (i) exp(zi · zn/τ)

}

The lead sum runs over all 2n views resulting from augmentation. For a given view i, P(i) is the set of all
indices for positive examples: those views having the same label as i (but excluding i itself). Likewise, N (i)
is the set of all indices for negative examples.
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1.18 2020: GPT-3

[7] introduces GPT-3 and develops the idea of in-context learning, where the model is provided with K
demonstrations of a task at inference time. No updates of the model’s weights are performed with these
demonstrations; rather, they are provided as context or conditioning. The number of demonstrations K is
limited by the size of the model’s context window. Zero-shot, one-shot, and few-shot learning are distin-
guished by whether K = 0, K = 1, or K ≥ 2 demonstrations are provided. For some tasks (e.g. general
language understanding via SuperGLUE), GPT-3 with few-shot learning achieves performance superior to
the fine-tuned state-of-the-art (SOTA), while for other tasks (e.g. reading comprehension via RACE) fine-
tuning remains superior.

1.19 2020: SimCLRv2

SimCLR v2 [12] is a semi-supervised learning framework with 3 main steps. First, self-supervised pre-
training on unlabeled data is conducted as in v1 [11], but with higher-capacity networks. Second, the model
is fine-tuned for a specific task on labeled data. Because a deeper projection head is used in v2, fine-tuning is
applied starting from a middle layer of g(·) rather than the output of the base encoder f(·). Finally, knowledge
distillation [27] is performed on the unlabeled data, in which a student network is trained to predict the
outputs of the fine-tuned teacher network. A key observation is that using higher capacity networks for the
base encoder leads to better task-specific performance after fine-tuning.

1.20 2020: BYOL

The Bootstrap Your Own Latent (BOYL) [22] framework utilizes two networks, the online network and the
target network. The online network has parameters θ and consists of an encoder fθ(·), a projector gθ(·), and
a predictor qθ(·). The target network is similar to the online network, but with two important differences:

1. Reminiscent of MoCo [24], the parameters ξ of the target network are an exponential moving average
of the parameters from the online network, ξ ← m · ξ + (1−m) · θ, m ∈ [0, 1].

2. A predictor is not included in the target network.

Starting from an input image x, two random augmentation are applied to produce a pair of views, v and v′.
The first view is passed through the online network to produce the representation y = fθ(v), the projection
z = gθ(y), and the prediction q = qθ(z). Likewise, the second view is passed through the target network
to produce the representation y′ = fξ(v

′) and projection z′ = gξ(y
′). The prediction q output by the

online network is tasked with approximating the projection z′ output by the target network. The half-loss
is the mean squared error between the normalized prediction q̄ and the normalized target representation z̄′,
ℓ(v, v′) = ||q̄ − z̄′||22. As the half-loss is asymmetric, the final loss is the obtained by adding this loss to the
half-loss ℓ(v′, v) obtained by swapping v and v′.

1.21 2020: SwAV

SwAV learns representations by swapping assignments between multiple views of the same image [8]. Given
representations z1 = fθ(x1) and z2 = fθ(x2) from two different views of the same image x, codes q1 and q2
are assigned based on similarity to a learnable set of K prototype vectors {c1, . . . , cK}. The loss is based
on the “swapped” prediction problem, where the code assigned to view 2 (i.e. q2) should be similar to the
representation assigned to image 1 (i.e. z1), and vice versa:

L(z1, z2) = ℓ(z1, q2) + ℓ(z2, q1).

The loss is the cross entropy with temperature τ :

ℓ(z, q) = −
K∑
k=1

q(k) ln p(k), p(k) =
exp(zT ck/τ)∑K

k′=1 exp(z
T ck′/τ)

.

For a given batch, the codes are computed in such a way (via the Sinkhorn-Knopp algorithm) that examples
within a batch are equally partitioned by the prototypes. SwAV also introduces the multi-crop strategy,
which forms views by taking two standard resolution crops and multiple low-resolution crops.
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1.22 2020: W-MSE

[20] proposes the whitening mean square error (W-MSE) loss, an alternative to contrastive loss that does not
require negative examples. Given an input image x, k ≥ 2 positive examples are generated via augmentation.
The images are embedded using a base encoder f (e.g. ResNet), then mapped into a lower dimensional space
via a non-linear projection head g. To calculate the loss, the initial outputs v = g ◦ f(x) are centered
by subtracting the batch mean µV , then scaled to have identity covariance using L−1, where LLT is the
Cholesky decomposition of the batch covariance matrix ΣV :

z = L−1(v − µV ).

For a batch with N images and k positive pairs per image, there are N
(
k
2

)
total positive pairs. The loss is

calculated as the sum over these pairs of a distance metric d(·, ·) between the representations:

ℓW-MSE =
1

N
(
k
2

) ∑
ij

d(zi, zj).

If the whitened representations z are further normalized to have unit length, which is equivalent to projecting
them onto the unit hypersphere, then taking d(·, ·) as the MSE is equivalent to using the cosine similarity.

1.23 2020: iGPT

The image generative pretrained transformer (iGPT) uses a sequence transformer architecture that predicts
pixels instead of tokens [10]. The autoregressive objective decomposes the likelihood of a pixel sequence as:

p(x) =

n∏
i=1

p(xi|xi−1, . . . , x1; θ)

for some linear ordering of the pixels in an image, and minimizes ℓAR = −EX{ln p(X)}. For comparison, a
BERT [17] objective, based on the idea of masked language modeling, is:

ℓBERT = −EXEM
n∑
i=1

ln p(xi|x[1,...,n]\M ),

where M ⊂ [1, . . . , n] is a subset of pixels randomly selected to be masked, each independently with probabil-
ity 0.15. The iGPT model utilizes a transformer decoder architecture [40]. For the autoregressive objective,
causal attention is applied such that the present pixel can only attend to preceding pixels. For the BERT
objective, attention is unmasked. In order to make the context length manageable, images are down-sampled
to a low working resolution (e.g. 32× 32 to 64× 64) in a constrained color space.

iGPT with the autoregressive objective is competitive with other self-supervised models on both the linear
probing and fine-tuning evaluations, but requires significantly more parameters than contrastive learning
methods (notably, SimCLR [11]). iGPT with the BERT objective under-performs on linear probing, but
excels at fine-tuning. Two interesting observations are that:

• For linear probing, embeddings from an intermediate layer, rather than the penultimate layer, typically
achieved better performance.

• When fine-tuning, optimizing the sum of the pre-training objetive and the classification objective led
to better performance than optimizing the classification objective alone.

1.24 2020: Vision Transformers

The vision transformer (ViT) [18] (Figure 3) models an image as a sequence of patches, regarding patches
similarly to tokens in NLP tasks. Each patch is flattened and linearly embedded. A learnable [class]

token is prepended to the patch sequence, whose state is output by the transformer encoder. A learnable
1D position embedding is added to each patch embedding. The transformer encoder applies self-attention
to the patch embeddings to capture relationships between patches. The ViT is pretrained to perform image
classification on a large data set, then fine-tuned for subsequent tasks.
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Figure 3. Source: An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale [18].

1.25 2020: SimSiam

Siamese networks are weight-sharing networks applied to different inputs (or different views of the same
input), and are useful for comparing or contrasting examples [14]. SimCLR [11], SwAV [8], and BYOL [22]
all use a Siamese architecture, and employ different strategies to prevent collapse of the representations to a
trivial (i.e. constant) solution. SimSiam [14] (Figure 4) uses an asymmetric Siamese architecture, with an
encoder f followed by a predictor h on one branch, and the same encoder followed by a stop-gradient on the
other branch. The objective is to minimize the symmetrized negative cosine similarity between p1 = h◦f(x1)
and z2 = f(x2). The authors observe that the use of the stop-gradient on one branch is essential to avoiding
collapse. Although features such as the predictor network, batch normalization, and similarity function affect
performance, they do not prevent collapse. Lastly, the authors relate SimSiam to existing architectures. It
is comparable SimCLR without the dissimilarity component of the loss; to SwAV without online clustering;
and to BOYL without momentum encoding for the target branch.

1.26 2020: DeiT

Data-efficient image Transforms (DeiT) [39] have a similar architecture to the ViT [18], with one addition: a
learnable distillation token, analogous to the class token, is appended after the patch sequence (by contrast,
the class token is appended before the patch sequence). When training the DeiT (i.e. the student), the
availability of a strong teacher is assumed. The loss consists of two parts: the final state of the class token
is used to predict the true label, and the final state of the distillation token is used to predict a label
provided by a teacher network. Soft distillation, as in [27], where the target is a probability distribution, is
distinguished from hard distillation, where the target is a discrete label, namely the argmax of the probability
distribution. The authors observe that hard distillation outperforms soft distillation, and that convnets make
better teachers than transformers, perhaps because they transfer inductive biases.
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(a) SimSiam

(b) Barlow Twins

Figure 4. Sources: (a) Exploring Simple Siamese Representation Learning [14]. (b) Barlow
Twins: Self-Supervised Learning via Redundancy Reduction [46].

1.27 2021: SEER

Most self-supervised learning algorithms are developed and evaluated in the context of the highly curated
ImageNet data set. Goyal et al [21] investigate whether competitive, high-capacity models can be trained on
collections of random (i.e. uncurated) internet images. When fine-tuned and evaluated on ImageNet, models
pretrained on internet images do not achieve the performance of models pretrained on ImageNet. However,
when evaluated on other data sets (e.g. iNaturalist, Places), models pretrained on internet images achieve
superior performance.

1.28 2021: Barlow Twins

Self-supervised learning aims to learn useful representations of the input data without requiring labels.
Although often approached by maximizing the similarity between representations of distorted views of the
same image, safeguards are needed to prevent the trivial solution of a constant representation [46]. In Barlow
twins (Figure 4), the loss is based on the cross-correlation of representations (ZA and ZB) from identical
networks applied to two different views of the same image:

ℓ =

K∑
k=1

(1− Ckk)
2 + λ

K∑
k=1

∑
j ̸=k

C2
jk

where K = dim(Z) is the embedding dimension, and Cjk is the correlation between the jth element of ZA
and the kth element of ZB calculated across the batch. Intuitively, the loss aims to make the cross-correlation
between the representations close to the identity matrix. This information bottleneck loss aims to conserve
as much information about the example as possible while being minimally informative about the specific
distortions applied during training. ResNet [26] is used for the encoder network, followed by a projector
network that transforms the output of the encoder network into the space where the loss is calculated.

Methods such as BYOL [22] and SimSiam [14] introduce asymmetry between the paried embeddings to
prevent collapse. For example, BYOL applies a predictor network to the online branch, and uses momentum
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updates for the parameters of the target branch. Barlow Twins neither requires, nor benefits from, this type
of symmetry breaking.

1.29 2021: Swin Transformer

The shifted windows (Swin) transformer [33] builds on ViT [18] through the use of hierarchical feature maps,
local attention, and staggered windows in consecutive layers. The image is first split into disjoint patches,
where each patch constitutes a visual token whose feature vector is the concatenation of the pixel intensities.
Swin transformer blocks, which maintain the number of tokens, are interleaved with merging layers, which
concatenate then linearly project the feature vectors of tokens within a group. The standard transformer
block computes global self-attention, which is quadratic in the number of tokens. The Swin transformer block
uses local self-attention, which is linear in the number of tokens for a fixed window size. Local attention limits
the ability of the model to learn long-range dependencies. The provide cross-window attention, the windows
of successive Swin transformer blocks are shifted. Lastly, the authors observe a benefit from including a
relative position bias in the self-attention calculation.

1.30 2021: DINO

In knowledge distillation with no labels (DINO) [9] (Figure 2), a student network is trained to predict
the output of a teacher network. The student network gθs(·) and teacher network gθt(·) have the same
structure, but the parameters of the teacher network are updated via an exponential moving average θt ←
m · θt + (1 −m) · θs, m ∈ [0, 1] (see MoCo [24]). The network’s output gθ(x) is converted to a probability
distribution over K dimensions using the temperature-normalized softmax:

P (x) =
exp{gθ(x)/τ}∑K
k=1 exp{gθ(x)/τ}

.

The parameters θs of the student network are updated to minimize the cross-entropy between the student
and teacher networks:

θs ← argmin
θs

H{Pt(x), Ps(x)}.

Here H(a, b) = −a ln b. Starting from an input image x, the loss is further specialized by taking two global
views, xg1 and xg2, which are passed only through the teacher, and multiple local views, xlk, which are only
passed through the student (see multi-crop from SwAV [8]). The final objective is:

ℓ =
∑
xg∈Xg

∑
xl∈Xl

H{Pt(xg), Ps(xl)}.

The motivation for this loss is to achieve “local-to-global” correspondence. To avoid collapse, a combination
of centering (i.e. updating the mean via an exponential moving average across batches) and sharpening (i.e.
applying the softmax with temperature τ < 1) is applied to the teacher network. Similar to SimCLR [11],
the network gθ = hθ ◦ fθ is composed of a base encoder fθ (e.g. ViT [18] or ResNet [26]) followed by a
projection head hθ, here a 3-layer MLP.

1.31 2021: MoCo v3

MoCo v3 [15] is an incremental improvement on the momentum contrast framework [24]. Two views x1

and x2 of an input image x are generated with random augmentations. Each view is encoded with a query
encoder fq and a key encoder fk:

q1, q2 = fq(x1), fq(x2) k1, k2 = fk(x1), fk(x2)

The query and key networks are asymmetric. The query network fq consists of a base encoder, a projection
head, and an extra prediction head [22]. The key network fk consists of the base encoder and projection head
only. The parameters of fq are updated during backpropagation, while the parameters of fk are updated as
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an exponential moving average of fq. The loss function in (1) is retained, but the memory queue from [24] is
discarded in favor of contrasting against the other examples in the same batch. The loss is symmetrized as:

ℓ = ℓ(q1, k2) + ℓ(q2, k1).

Observations:

• Freezing the parameters of the ViT’s patch projection layer during training (i.e. fixing a random patch
projection) improved stability and final accuracy.

• A ViT with a sine-cosine positional embedding outperformed a model with a learned positional embed-
ding. Ablating the positional embedding entirely only decreased ImageNet accuracy 1.6% suggesting
that the ViT is not making full use of positional information.

• A model in which the [class] token was replaced by global average pooling achieved similar accuracy,
suggesting the [class] token is non-essential to the ViT.

• Using momentum (m = 0.99) contributed a 2.2% increase in accuracy. Using a prediction head in fq
contributed 1% to accuracy, as did replacing replacing layer norm by batch norm in the ViT.

1.32 2021: VICReg

The Variance-Invariance-Covariance regularization (VICReg) scheme [5] is based on a joint embedding ar-
chitecture (Figure 7) together with a loss composed of three components:

• Invariance term: the MSE between two embeddings of the same image, which should be minimized.
For N examples, the invariance term is calculated between embeddings zi and z̃i from two views of
the same image:

ℓI =
1

N

N∑
i=1

||zi − z̃i||22.

• Variance term: a hinge loss which maintains the standard deviation of each embedding dimension
above a threshold, encouraging different representations across examples. Specifically:

ℓV =
1

J

J∑
j=1

max{0, γ − Sϵ(zj)}

where J is the dimension of the embedding, γ is the target standard deviation, and Sϵ(x) =
√
V(x) + ϵ.

Use of the standard deviation rather than the variance is intentional, and helps to avoid collapse.

• Covariance term: a term that attracts the covariances between embedding dimensions towards zero,
preventing informational redundancy. Following Barlow Twins [46], the covariance term is:

ℓC =
1

J

J∑
j=1

∑
k ̸=j

C2
jk,

where Cjk denotes the covariance between embedding dimensions j and k.

• The overall loss function is:

ℓ = α1ℓI(z, z̃) + α2

{
ℓV (z) + ℓV (z̃)

}
+ α3

{
ℓC(z) + ℓC(z̃)

}
.

Here the αs are weights controlling the relative importance of each term. Note that the variance and
covariance losses are applied to each branch separately, while the invariance loss is calculated between
the branches.

A symmetrical Siamese architecture with shared weights is adopted, although this is not a requirement.
Each branch consists of an encoder (e.g. ResNet50), which produces representations, followed by an expander,
which maps to the space where the loss is calculated. The expander is an MLP which maps to a space 4× the
dimension of the encoder (i.e. 2048). For multi-modal tasks, the branches can have different architectures,
and the per-branch losses can receive different weights.
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1.33 2021: BEiT

Bidirection encoder representation from image transformers (BEiT) [4] proposes masked image modeling
(MIM), by analogy to the masked language modeling proposed in BERT [17]. An input image is first
partitioned into patches and flattened into vectors (xi, . . . , xN ), then linearly projected to obtain patch
embeddings (Ex1, . . . , ExN ). A learnable start token e[S] is prepended to the input sequence, and a learnable
1D position embedding Epos is added, forming the input to the transformer blocks:

H0 = (e[S], Ex1, . . . , ExN ) + Epos

The output HL = (h[S], h1, . . . , hN ) of the transformer blocks serves as the encoding of the image patches.
Targets for the pretext task are obtained by passing the image through an image tokenizer : a discrete
variational autoencoder (dVAE) [38] (the DALL-E tokenizer). The dVAE maps the input image x to a set
z = (z1, . . . , zN ) of discrete tokens, drawn from a finite vocabulary, then learns to reconstruct x from the
visual tokens z. Importantly, there is one token per input patch. To perform MIM, a fraction (40%) of the
input embeddings are replaced by a learnable mask embedding e[M ], for example:

HM
0 = (e[S], Ex1, e[M ], Ex3, e[M ], Ex5) + Epos.

Rather than choosing patches completely at random, masking is applied to contiguous blocks. The objective
is to minimize the evidence lower bound:∑

(xi,x∗
i )

ln p(xi|x∗
i ) ≥

∑
(xi,x∗

i )

Ezi∼qϕ(zi|xi){ln pψ(xi|zi)} −KL{qϕ(z|xi), pθ(zi|x∗
i )}

Here x∗
i denotes a masked patch and xi the corresponding original patch; qϕ(zi|xi) is the encoder of the

dVAE, and pψ(xi|zi) the decoder; finally, pθ(zi|x∗
i ) is the model which recovers the visual tokens from the

masked image. The model is pre-trained on the MIM task. For down-stream tasks, a task layer is appended
after the final transformer layer, and the model is fine-tuned. Key components of the BEiT design are the
combination of discrete visual tokens and blockwise masking.

1.34 2021: EsViT

Efficient self-supervised Vision Transformers (EsViT) [31] extends the shifted window (Swin) transformer
[33] to the self-supervised setting. Training is similar to DINO [9]. Specifically, a student is trained to match
the output of a teacher, and the parameters of the teacher are updated as an exponential moving average
of the student. Each network is composed of a base encoder f and a pair of projection heads, hV for the
view-level loss, and hR for the region-level loss. The projection heads are MLPs with a softmax over the
last layer, such that the output is a probability distribution. As in [33], an image is broken into a sequence
of patches, which are hierarchically featurized by passage through f . For a given view v, the output of the
base encoder f(v) is the feature sequence (z1, . . . , zT ), where zi is the representation for the ith region. The
view-level loss is calculated from the average feature vector for a view z̄ = mean{f(v)}:

ℓV = − 1

|P|
∑

(s,t)∈P

hV (z̄t; θt) lnhV (z̄s; θs).

Here P denotes the set of pairs of student and teacher views, z̄s denote the average feature vector for the
student’s view, and z̄t for the teacher’s view. The region-level loss operates on individual feature vectors
from (z1, . . . , zT ):

ℓR =
1

|P|
∑

(s,t)∈P

HR(s, t), HR(s, t) = −
1

T

T∑
i=1

hR(zj∗; θt) lnhR(zi; θs),

Here j∗ = j∗(i) is the index of the teacher feature vector that is most similar to the ith student feature
vector. The overall loss ℓ = ℓV + ℓR.
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1.35 2021: Masked Autoencoders

• Topics: Computer vision.

The masked autoencoder (MAE) [23] strategy divides an image into patches, then randomly samples a subset
of patches without replacement for encoding. Masking a high percentage (∼ 75%) is necessary to create a
challenging pretraining task. The encoder is a ViT that only operates on the visible or unmasked patches.
The decoder accepts both the visible patch encodings and mask tokens, where the mask tokens are shared,
learnable vectors. The decoder is only used during pretraining for the image reconstruction task. The loss
function is mean squared error in pixel space, calculated only over the masked patches.

1.36 2021: iBOT

Image BERT pretraining with online tokenizer (iBOT) [47] (Figure 5) builds on BEiT [4] by learning the
tokenizer in parallel with the encoder. iBOT uses a student-teacher setup, where the teacher plays the
role of the online tokenizer. Two views, u and v are obtained from an input image x by applying random
augmentations. Each view is partitioned into a sequence of patches: u = (ui) and v = (vi). Blockwise
masking is applied to u and v, replacing some patches with learnable mask tokens. Let u∗ and v∗ denote
the masked sequences. The student network PS = hS ◦ fS is composed of a base learner fS and a patch
projector hS , and the teacher has an analogous architecture. The parameters of the teacher network are an
exponential moving average of the parameters of the student network. The output of each is a probability
distribution over K dimensions. The masked image modeling (MIM) component of the loss is:

ℓMIM = −
∑
i

miPT (ui)
′ lnPS(u

∗
i )−

∑
j

mjPT (vj)
′ lnPS(v

∗
j ).

Here the sum runs over the patches within an image, and only the patches that are masked to the student
contribute to the MIM loss. Note that the MIM loss compares the student’s distribution, given the masked
version of a view, with the teacher’s distribution, given the unmasked version of the same view. The
knowledge distillation component of the objective is:

ℓKD = −PT (u)′ lnPS(v∗)− PT (v)
′ lnPS(u

∗).

Note that for the KD loss, the student is given the masked version of one view while the teacher is given the
unmasked version of the other view.

1.37 2021: SimMIM

In simple masked image modeling (SimMIM), a section of the input image is masked, the masked image is
passed through an encoder (e.g. ViT or Swin), then a linear layer predicts the pixel values in the masked
region using L1 regression loss [44]. Each masked patch is represented by a learnable token of the same
dimension as the other patches after embedding. To account for down-sampling, a 1 × 1 convolution is
applied to the output of the encoder, reshaping it to have the same dimension as the number of pixels in the
masked region (e.g. 32× 32× 3 for a color image).

Observations:

• Randomly masking outperforms contiguous, block-wise masking, although performance depends on the
mask size and the proportion of patches that are masked. Comparing computer vision with NLP, the
optimal masking ratio is higher in vision.

• Using a lightweight (i.e. linear) prediction head leads to performance as good or better than deeper pre-
diction heads on the fine-tuning evaluation. However, the resulting representations are not competative
for linear probing.
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Figure 5. Source: iBOT: Image BERT Pre-Training with Online Tokenizer [47].

1.38 2021: MaskFeat

Masked feature (MaskFeat) prediction [41] proposes to directly predict features of masked image tokens.
Possible targets include pixel intensities, histograms of oriented gradients, tokens from a discrete VAE [38],
and embeddings for supervised or self-supervised models (e.g. ResNet50 or ViT-B). The input image is divided
into patches, following BEiT [4], blocks of patches are masked by a learnable token, a positional embedding
is added, the patch embeddings are passed through a transformer, output tokens for masked patches are
linearly projected, adjusting their dimension depending on the target features, and the loss against the
targets (typically L2) is calculated. Among featurizations that do not require pre-training, the histogram
of oriented gradients provides the best targets. Among featurizations that did require pre-training, ViT-B
trained with DINO [9] provided the best targets. When the target features are extracted from a pre-trained
model, this model may be viewed as a teacher. Targets extracted from supervised models under-performed.

1.39 2021: RCDM

The Representation Conditional Diffusion Model (RCDM) [6] provides a means to investigate the latent
space learned by a self-supervised model. A diffusion model with a UNet architecture is trained to predict
the noise which should be removed from an image in order to reverse a progressive corruption process. This
UNet is directly conditioned on a representation h of the input image. Once trained, the model can be used
to sample the latent space while conditioning on the representation of an input image. Many self-supervised
models, including SimCLR and DINO, consist of a base encoder followed by a projector. By visualizing each
latent space, the authors demonstrate that most of the invariances promoted by the augmentations applied
during training affect only the final representation (i.e. that obtained following the projector) rather than the
base representation. That the base representation retains more information about the initial image explains
why it achieves better performance when evaluated by linear probing.

1.40 2021: SplitMask

In SplitMask [19], an image is augmented then split into 16× 16 patches. The patches are partitioned into
disjoint sets A and B, where patches in B are masked from the perspective of A and vice versa. Each set
of patches, (xa) and (xb), is processed independently by a shared ViT to produce encodings (za) and (zb).
The encodings then pass through a shared shallow ViT to return decodings (ya) and (yb). A masked image
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modeling (MIM) loss is calculated between the encodings and decodings, i.e. (xa) ↔ (ya) and (xb) ↔ (yb).
For example, the MIM task may be to classify each patch into a discrete finite visual vocabular, as in BEiT
[4]. In addition, the decodings are mean pooled to produce global representations yA and yB . An InfoNCE
loss is calculated between these representations:

ℓ(yA; yB) =
exp(y′AyB/τ)∑

y∈{yB}∪N exp(y′Ay/τ)
,

where N is the set of negatives, composed of the representations from other images in the batch.

Observations:

• Models based on autoencoding a masked image fall within the denoising autoencoder framework, where
the masking operation corresponds to adding noise. A key contribution of [19] is demonstrating that
denoising autoencoders are data-efficient, and thus capable to learning representations using data sets
orders of magnitude smaller than ImageNet.

• An experiment is run in which the DALL-E tokenzier [38] utilized by BEiT is replaced with random
projection tokenizer. Let V denote the visual vocabulary size and x a vectorial patch embedding.
For k ∈ {1, . . . , V } let uk denote a unit vector of the same dimension as v with components sampled
uniformly at random. The random projection tokenier is:

k = arg max
k∈{1,...,V }

x′uk.

Performance using the random projection tokenizer is equivalent to that using the DALL-E tokenizer,
at a fraction of the computational cost.

1.41 2022: data2vec

data2vec is a general framework for self-supervised learning intended for use with language, speech, and
vision [3]. The input is first encoded as a sequence of tokens (e.g. patches in the case of an image). For
the student’s view, a subset of tokens are randomly replaced with a learnable [MASK] token. The student
is tasked with predicting the output of a teacher, which receives an unmasked input sequence. Specifically,
the student must predict a contextualized latent representation: the mean of the top K blocks of the teacher
network for the masked tokens. The teacher has the same architecture as the student, and its weights are
an exponential moving average of the student’s. For computer vision, a ViT architecture is adopted. The
objective is the Huber loss between the student and teacher representations. Augmentations are applied,
but the student and teacher both see the same modified image. For image classification, the mean-pooling
is applied to the last transformer block, which becomes the input to a softmax classification layer.

Observations:

• Ablation studies demonstrate that averaging K > 1 layers leads to better performance than predicting
only the last layer for all modalities.

• Due to self-attention, the targets take into account broader context. This distinguishes data2vec from
methods that learn to reconstruct a local part of the input image.

• Representation collapse, in which all inputs are mapped to similar representations, can be avoided by
preventing the teacher weights from changing too quickly.

1.42 2022: Context Autoencoder

The context autoencoder (CAE) utilizes an encoder-regressor-decoder architecture [13]. An input image x
is randomly split into two sets of patches: visible xv and masked xm. The encoder f (i.e. a ViT), maps the
visible patches to embeddings zv = f(xv). A regressor h predicts the embeddings of the masked patches
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zm = f(xm) from those for the visible patches zv, conditioned on the positions of the masked patches. This
step aligns h◦f(zv) with f(xm). The decoder attempts to predict targets ym for the masked patches from the
embeddings predicted by the regressor ẑm = h(zv). Both the original masked patches xm and tokenizations
of the masked patches, obtained from the dVAE used in BEiT [4], are considered as targets.

1.43 2022: Masked Siamese Networks

In Masked Siamese Networks (MSNs) [1] (Figure 6), random data augmentation is applied to an input
image to generate the target view and M ≥ 1 anchor views. The views are partitioned into patches, and
random plus focal masking is applied to the anchor views. An anchor encoder and a target encoder are
trained to map from patches to embeddings; the parameters of the target encoder are an exponential moving
average of the parameters of the anchor encoder. For MSNs, the encoder is a ViT, and the output is the final
representation of the [CLS] token. To train the encoder, a distribution of each view is calculated over a set
of K > 1 learnable prototype vectors. The model is penalized for differences between the target distribution
and the anchor distributions. The overall loss is:

ℓ =
1

MN

N∑
i=1

M∑
m=1

H(p+i , pim)− λH(p̄).

Here N is the number of examples, M is the number of anchors per image, p+i is the distribution over
prototypes for the target view, pim is the distribution over prototypes for anchor view m, λ is a penalty
parameter, and p̄ is the mean distribution of the anchor views:

p̄ =
1

MN

N∑
i=1

M∑
m=1

pim.

The penalty term, i.e. λH(p̄), is referred to as the mean entropy maximization regularizer, and encourages
the model to utilize the full set of prototype vectors. MSNs can be viewed as a generalization of DINO [9].
Unlike similar masking-based methods (e.g. SplitMask [19], data2vec [3]), MSNs do not utilize a learnable
masking token.

1.44 2023: I-JEPA

Representations learned by predicting masked content require less prior knowledge than methods based on
view-invariance (e.g. contrastive learning), but the resulting representations are at a lower semantic level, and
under-perform representations learned via view-invariance on linear-probing. Consequently, representations
learned by masking typically require end-to-end fine-tuning.

Self-supervised learning architectures fit within the framework of energy-based models [2] (see Figure 7). A
joint embedding architecture aims to output similar embeddings (SX , SY ) for compatible views, but requires
a mechanism to prevent representation collapse. A generative architecture learns to reconstruct the target Y
from an encoded input SX and an auxiliary input Z. For example, in masked learning, SX is the embedding
of the masked image, and Z is often a learnable masking token. Finally, the joint embedding predictive ar-
chitecture is similar to the generative architecture, however the loss is calculated in embedding space rather
than input space.

In Image-based Joint-Embedding Predictive Architecture (I-JEPA) [2], the image is split into a sequence of N
non-overlapping patches, then passed through a target encoder to obtain representations sY = (sY 1, . . . , sY N ).
M blocks of contiguous patches, possibly overlapping, serve as the targets. Independently, a context block
is sampled, overlap with the target blocks is removed, then the context is encoded into representations
sX = (sX1, . . . , sXJ). A predictor takes as input the representations sX of the context encoder and a learn-
able mask token for patch in the target blocks. The task is to predict representations at patches within
the target blocks. Let SY j denote the representation at patch j within block i, and ŜY j the predicted
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Figure 6. Source: Masked Siamese Networks for Label-Efficient Learning [1].

representation based on the context representations sX at a corresponding mask token mj . Then loss is:

ℓ =
1

M

M∑
i=1

∑
j∈Bi

D
(
ŝY j , sY j

)
,

where D denotes a distance function. The context encoder, target encoder, and predicted all have ViT
architectures.

Observations:

• Compared to data2vec [3], MAE [23], and CAE [13], I-JEPA improves performance on linear-probing
and fine-tuning evaluations while requiring less computation.

• Computing the loss in pixel space, rather than representation space, significantly decreases perfor-
mance. Moreover, performance is sensitive to the masking strategy, with multi-block masking achieving
the best performance.

1.45 2023: DINO v2

As in the original DINO [9], the image-level objective of DINO v2 [35] consists of training a student network
to match the output of a teacher network, which is itself an exponential moving average of the student.
Both student and teacher have a ViT architecture. The final state of the [CLS] is passed through an
MLP projection head to generate a vector of prototype scores. This vector is then mapped to a probability
distribution via the softmax with Sinkhorn-Knopp (SK) centering. The DINO term of the loss is the cross
entropy between the student and teacher distributions:

ℓDINO = −
∑

pt ln ps,
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Figure 7. Source: Self-Supervised Learning from Images with a Joint-Embedding Predictive
Architecture [2].

where ps denotes the student’s distribution and pt the teacher’s. An iBOT [47] loss is calculated by randomly
masking some of the input patches to the student but not the teacher. For each masked patch, indexed by
i, a cross entropy loss is calculated between the student’s and the teacher’s representations, after applying a
softmax with SK centering:

ℓiBOT = −
∑
i

pti ln psi.

Additionally, DINO v2 adds Kozachenko-Leonenko (KoLeo) regularization:

ℓKoLeo = − 1

n

n∑
i=1

ln(δni), δni = min
j ̸=i
||xi − xj ||.

Observations:

• iBOT suggested sharing parameters between the projection heads used during calculation of ℓDINO and
ℓiBOT, but DINO v2 finds better performance using different parameters.

• Training a larger model (ViT-g) then distilling to a smaller model (ViT-L) outperforms training the
smaller model from scratch.

• Training at high resolution improves performance at the cost of significantly more compute. As a
compromise, a fixed amount of training at high resolution is added to the end of pre-training.

• When PCA was performed on the patch features extracted by DINO v2, the first PC separated fore-
ground from background, and subsequent PCs correspond to parts of objects.

1.46 2023: Registers

The goal of self-supervised learning is to learn a genetic feature extractor which can be used for multiple
downstream tasks. Darcet et al [16] observe that the attention maps from most ViTs, although not the orig-
inal DINO, contain a small number outlier tokens with high norms scattered throughout the background.
The authors hypothesize that the model learns to recognize patches containing little information, and repur-
poses the corresponding tokens to aggregate global image information while discarding local information. To
remedy this behavior, learnable register tokens [reg] are added after the patch embedding layer, similarly
to the [CLS] token. At the output, the final states of these tokens are discarded. The optimal number of
registers depends on the downstream task; adding the first provides the most benefit, and adding subsequent
registers may or may not provide benefit.
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Notes

2.1 Evaluation Protocols

Common protocols for evaluating self-supervised learning methods include the following.

• k-nearest neighbors: The pre-trained model is frozen, and representation vectors, typically the
output of the base encoder f , are generated for all examples in the training data set. For a new
example x in the evaluation data set, a represent z = f(x) is calculated from the pre-trained model.
The label of x is determined by majority vote among the top k (e.g. 20) nearest neighbors of z from
the training data.

• Linear probing: The pre-trained model f is frozen and used to generate representations for all
examples in the evaluation data set. Then, a simple linear model is trained to perform a down-stream
task, such as classification, given the representations.

• Semi-supervised learning: Within a large labeled data set, typically ImageNet, the base encoder f
is first pre-trained via self-supervised learning. Then, using a subset of the labeled data, typically 1%
or 10%, the base model is fine-tuned to perform the evaluation task (e.g. classification).

• Transfer learning: The base encoder f is pre-trained via self-supervised learning in a large data set.
The model is then transferred to another data set and adapted to perform the task of interest, such as
object detection or semantic segmentation. The evaluation may be performed with the base encoder
frozen, as in linear probing, or unfrozen, as in fine-tuning.

• Object detection: The base encoder f is pre-trained via self-supervised learning, integrated into
a Mask R-CNN model [25], then fine-tuned and evaluated on COCO. The evaluation metric is the
Average Precision (AP) of the object bounding box.

• Semantic segmentation: The base encoder f is pre-trained via self-supervised learning, integrated
into a UPerNet model [42], then fine-tuned and evaluated on ADE20K. The evaluation metric is the
mean Intersection over Union (mIoU), averaged over semantic categories.
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